Structured Methods for Solving Hankel Matrix Approximation Problems

نویسنده

  • Suliman Al-Homidan
چکیده

The problem of finding the nearest positive semidefinite Hankel matrix of a given rank to an arbitrary matrix is considered. The problem is formulated as a nonlinear minimization problem with positive semidefinite Hankel matrix as constraints. Then an algorithm with rapid convergence is obtained by the Sequential Quadratic Programming (SQP) method. A second approach is to formulate the problem as a smooth unconstrained minimization problem, for which rapid convergence can be obtained by, for example, the BFGS method. This paper studies both methods. Comparative numerical results are reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent progress on variable projection methods for structured low-rank approximation

Rank deficiency of a data matrix is equivalent to the existence of an exact linear model for the data. For the purpose of linear static modeling, the matrix is unstructured and the corresponding modeling problem is an approximation of the matrix by another matrix of a lower rank. In the context of linear time-invariant dynamic models, the appropriate data matrix is Hankel and the corresponding ...

متن کامل

Stochastic algorithms for solving structured low-rank matrix approximation problems

In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank approximation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem of finding the closest (in some pre-defined norm) rank r approximation of a given Hankel matrix, which is also of Hankel structure. We demonstrate that finding optimal s...

متن کامل

Recent process on structured low-rank approximation

Rank deficiency of a data matrix is equivalent to the existence of an exact linear model for the data. For the purpose of linear static modeling, the matrix is unstructured and the corresponding modeling problem is an approximation of the matrix by another matrix of a lower rank. In the context of linear time-invariant dynamic models, the appropriate data matrix is Hankel and the corresponding ...

متن کامل

Recent progress in structured low-rank approximation

Rank deficiency of a data matrix is equivalent to the existence of an exact linear model for the data. For the purpose of linear static modeling, the matrix is unstructured and the correspondingmodeling problem is an approximation of the matrix by another matrix of a lower rank. In the context of linear time-invariant dynamic models, the appropriate data matrix is Hankel and the corresponding m...

متن کامل

Analysis of Structured Low Rank Approximation as an Optimization Problem

In this paper, we consider the so-called structured low rank approximation (SLRA) problem as a problem of optimization on the set of either matrices or vectors. Briefly, SLRA is defined as follows. Given an initial matrix with a certain structure (for example, Hankel), the aim is to find a matrix of specified lower rank that approximates this initial matrix, whilst maintaining the initial struc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005